Stochastic Optimization with Importance Sampling for Regularized Loss Minimization
نویسندگان
چکیده
Uniform sampling of training data has been commonly used in traditional stochastic optimization algorithms such as Proximal Stochastic Mirror Descent (prox-SMD) and Proximal Stochastic Dual Coordinate Ascent (prox-SDCA). Although uniform sampling can guarantee that the sampled stochastic quantity is an unbiased estimate of the corresponding true quantity, the resulting estimator may have a rather high variance, which negatively affects the convergence of the underlying optimization procedure. In this paper we study stochastic optimization, including prox-SMD and prox-SDCA, with importance sampling, which improves the convergence rate by reducing the stochastic variance. We theoretically analyze the algorithms and empirically validate their effectiveness.
منابع مشابه
Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization
We consider a generic convex optimization problem associated with regularized empirical risk minimization of linear predictors. The problem structure allows us to reformulate it as a convex-concave saddle point problem. We propose a stochastic primal-dual coordinate method, which alternates between maximizing over one (or more) randomly chosen dual variable and minimizing over the primal variab...
متن کاملDistributed Stochastic Optimization of the Regularized Risk
Many machine learning algorithms minimize a regularized risk, and stochastic optimization is widely used for this task. When working with massive data, it is desirable to perform stochastic optimization in parallel. Unfortunately, many existing stochastic algorithms cannot be parallelized efficiently. In this paper we show that one can rewrite the regularized risk minimization problem as an equ...
متن کاملStochastic Dual Coordinate Ascent with Adaptive Probabilities
This paper introduces AdaSDCA: an adaptive variant of stochastic dual coordinate ascent (SDCA) for solving the regularized empirical risk minimization problems. Our modification consists in allowing the method adaptively change the probability distribution over the dual variables throughout the iterative process. AdaSDCA achieves provably better complexity bound than SDCA with the best fixed pr...
متن کاملLocal Smoothness in Variance Reduced Optimization
We propose a family of non-uniform sampling strategies to provably speed up a class of stochastic optimization algorithms with linear convergence including Stochastic Variance Reduced Gradient (SVRG) and Stochastic Dual Coordinate Ascent (SDCA). For a large family of penalized empirical risk minimization problems, our methods exploit data dependent local smoothness of the loss functions near th...
متن کاملNew Quasi-Newton Optimization Methods for Machine Learning
This thesis develops new quasi-Newton optimization methods that exploit the wellstructured functional form of objective functions often encountered in machine learning, while still maintaining the solid foundation of the standard BFGS quasi-Newton method. In particular, our algorithms are tailored for two categories of machine learning problems: (1) regularized risk minimization problems with c...
متن کامل